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1 Introduction 
 
1.1 Objective 
 
This document describes the algorithm and processing method for the Greenhouse gases Observing 
SATellite-2 (GOSAT-2) Level 4 (L4) carbon dioxide (CO2) Product and provides an overview of the 
latest version (01.02). The algorithm is intended to estimate the global surface CO2 flux based on the 
GOSAT-2 Thermal And Near infrared Sensor for carbon Observation-Fourier Transform 
Spectrometer-2 (TANSO-FTS-2) short wavelength infrared (SWIR) Level 2 (L2) Column-averaged 
Dry-air Mole Fraction Product, as well as the global CO2 distribution. The system consists of an 
atmospheric tracer transport model, an inverse analysis scheme, and a priori information. This 
document provides a description and references for each of these components. 
 
1.2 Product revision history 
 

Table 1. Revision history 

Version Date Author Description 
01.01 4 December 2022 M. Saito Initial version 
01.02 22 March 2024 M. Saito Second delivery version 
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2 GOSAT-2 observations 
 
GOSAT-2 is a satellite dedicated to greenhouse gas observations of CO2 and methane (CH4). The 
satellite carries a Fourier transform spectrometer (TANSO-FTS-2) and a push-broom imaging 
radiometer TANSO Cloud and Aerosol Imager-2 (TANSO-CAI-2). TANSO-FTS-2 measures SWIR 
sunlight reflected from Earth’s surface and thermal infrared (TIR) radiation emitted from the ground 
and Earth’s atmosphere. TANSO-FTS-2 has a high spectral resolution of 0.2 cm−1 and operates in five 
spectral bands: three in the SWIR spectral range (0.75–0.77, 1.56–1.69, and 1.92–2.33 μm; bands 1, 
2, and 3, respectively), and two in the TIR spectral range (5.5–8.4 and 8.4–14.3 μm; bands 4 and 5, 
respectively). Column-averaged dry-air mole fractions of CO2 and CH4 (denoted as XCO2 and XCH4, 
respectively) are retrieved using the 1.6 and 2.0 μm bands for CO2 and the 1.6 and 2.3 μm bands for 
CH4. TANSO-FTS-2 spectral data can also resolve carbon monoxide (CO) using the 2.3 μm band, in 
addition to XCO2 and XCH4. Spectral radiance in the two TIR bands is used to obtain information on 
vertical profiles of atmospheric concentrations of CO2 and CH4. TANSO-FTS-2 has an intelligent 
pointing mechanism that immediately identifies cloud positions in the field of view using an onboard 
camera and points to a cloud-free location. The camera has a spatial resolution of ⁓0.1 km with 608 × 
1024 pixels over 30 km in the along-track field and 50 km in the cross-track field. 

TANSO-CAI-2 has five observation bands for forward viewing at 343, 443, 674, 869, and 1630 
nm, and backward viewing at 380, 550, 674, 869, and 1630 nm. It provides data for identifying clouds 
and aerosol conditions in the cross-track field over a distance of 1000 km. 

The instruments on GOSAT-2 have been described in detail by Suto et al. (2021). 
GOSAT-2 flies in a sun-synchronous orbit at an altitude of 613 km. The equator-crossing local 

time of the descending node is 13:00 with a repeat cycle of 6 days (inclination angle of 98.0° ± 0.1°). 
The pointing mechanism for TANSO-FTS-2 covers a range of ±40° in the along-track direction and 
±35° in the cross-track direction. The observation interval of TANSO-FTS-2 is 4.024 s, with a nominal 
turnaround time of 0.65 s required for changing the pointing location, taking an image, identifying 
cloud locations in the image, and repointing to a cloud-free location. The field of view of TANSO-
FTS-2 is 15.8 mrad for all bands, and the instantaneous ground field of view is a circle with diameter 
9.6 km. 
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3 Product design 
 
The GOSAT-2 mission is designed to enhance the space-borne measurements of major greenhouse 
gases that began with GOSAT observations, and to monitor the impacts of climate change and human 
activities on the carbon cycle. GOSAT observations have improved the accuracy of single shot 
measurements of greenhouse gases (Yokota et al., 2009) relative to former satellite missions, providing 
confidence in the use of XCO2 and XCH4 data from space to constrain models that generate global 
flux estimates using atmospheric inversions (e.g., Maksyutov et al., 2013). However, GOSAT 
observations provide sparse coverage as a trade-off for the high data quality, resulting in difficulties 
in quantifying regional fluxes using satellite observations alone. This limited observational coverage, 
together with the need to minimize the computational cost of atmospheric inversion, means that flux 
estimates from GOSAT data are resolved on a sub-continental scale (64 regions over the globe) using 
the National Institute for Environmental Studies (NIES) atmospheric tracer transport model (NIES-
TM) and a fixed-lag Kalman smoother with ground-based observations and GOSAT XCO2 and XCH4 
observations (Maksyutov et al., 2013). This combined application of ground-based and satellite 
observations to atmospheric inversion allows more accurate inverse estimation of sub-continental 
fluxes; however, it does not allow a quantitative assessment of the degree to which satellite 
observations contribute to filling the gaps in greenhouse gas observations for carbon flux estimates at 
regional and even national scales. 

TANSO-FTS-2 measures XCO2 and XCH4 over land with better sampling (more than twice the 
sampling rate) than TANSO-FTS, the main sensor aboard GOSAT, using an intelligent pointing 
mechanism. In addition, TANSO-FTS-2 has wider pointing angles than those of TANSO-FTS, 
especially in the along-track direction, allowing wider coverage of observation locations, which 
contributes to an increase in the available sun glint points over the ocean. Observations by GOSAT-2, 
which is equipped with enhanced versions of the instruments aboard GOSAT, are expected to facilitate 
the use of satellite observations in carbon cycle assessments and further improve the spatial resolution 
of flux estimates to better understand regional sources and sinks. The improvement in satellite 
observations afforded by GOSAT-2 is illustrated by the fact that using GOSAT-2 observations alone, 
the GOSAT-2 L4 Product estimates global surface CO2 and CH4 fluxes with a higher spatial resolution 
than those estimated by GOSAT. The atmospheric transport model and inverse scheme used for the 
GOSAT-2 L4 Product represent an upgraded version of the model system used in the GOSAT mission 
(NIES-TM with a fixed-lag Kalman smoother). The new model system, which is the Non-hydrostatic 
Icosahedral Atmospheric Model (NICAM)-based Inverse Simulation for Monitoring CO2 (NISMON-
CO2), as described by Niwa et al. (2021), improves the spatial resolution of flux estimates. The 
NISMON-CO2 consists of a NICAM-based transport model (NICAM-TM; Niwa et al., 2011) for 
forward simulation and an atmospheric inversion using the four-dimensional variational (4D-Var) 
method (Niwa et al., 2017a, b). The NISMON-CO2 is operated on an icosahedral grid obtained by five 
iterations of recursive division (glevel-5, horizontal spatial resolution of ~223 km) and 40 vertical 
layers with a time step of 20 min. Information on the GOSAT-2 L4 Product plays an important role in 
assessing the robustness of GOSAT-2 measurements and the contribution of GOSAT-2 observations 
to the identification of regional sources and sinks. 
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4 Algorithm description 
 
4.1 Overview 
 
The GOSAT-2 L4 Product consists of global surface CO2 and CH4 flux estimates from GOSAT-2 
XCO2 and XCH4 data, and three-dimensional fields of atmospheric CO2 and CH4 concentrations that 
are simulated using the estimated surface fluxes. The GOSAT-2 L4 product is provided by simulation 
frameworks that make up the GOSAT-2 L4 computational system. 

The global surface CO2 flux is estimated using NISMON-CO2 in the context of Bayesian 
inference. The Bayesian least-squares estimate is obtained by minimizing the cost function as follows: 
 

𝐉𝐉 = 1
2 �𝐱𝐱 − 𝐱𝐱pri�T𝐁𝐁−1�𝐱𝐱 − 𝐱𝐱pri� + 1

2 (𝐌𝐌𝐱𝐱 − 𝐲𝐲)T𝐑𝐑−1(𝐌𝐌𝐱𝐱 − 𝐲𝐲), (1) 

 
where 𝐱𝐱 and 𝐱𝐱pri are vectors for modeled and a priori source and sink strengths, respectively; 𝐌𝐌 
is a matrix of a linear forward transport model used to obtain estimates of concentrations at each 
measurement; 𝐲𝐲  is a vector of observed concentrations; and 𝐁𝐁  and 𝐑𝐑  are error covariance 
matrices for the a priori flux estimates and the misfit of concentrations between observations and 
model predictions, respectively. The superscript T  denotes the transpose operator. In practical 
operation of NISMON-CO2, Eq. (1) is replaced with 𝛿𝛿𝐱𝐱 = 𝐱𝐱 − 𝐱𝐱pri as follows: 
 

𝐉𝐉 = 1
2 𝛿𝛿𝐱𝐱T𝐁𝐁−1𝛿𝛿𝐱𝐱 + 1

2 (𝐌𝐌𝛿𝛿𝐱𝐱 − 𝐝𝐝)T𝐑𝐑−1(𝐌𝐌𝛿𝛿𝐱𝐱 − 𝐝𝐝), (2) 

 
where 𝐝𝐝 = 𝐲𝐲 − 𝐌𝐌𝐱𝐱pri. 

In performing the inversion, GOSAT-2 XCO2 data are the primary source of the observations, 𝐲𝐲, 
for deducing global surface CO2 fluxes, 𝐱𝐱. The a priori CO2 source and sink data, 𝐱𝐱pri, as used in the 
GOSAT-2 L4 CO2 computational system, consist of six types: monthly fossil fuel CO2 (FFCO2) 
emissions; hourly gross primary productivity (GPP); hourly ecosystem respiration (RE); monthly land 
use change (LUC) emissions; monthly biomass burning (BB) emissions; and monthly ocean–
atmosphere (OCN) CO2 exchanges. In the initial version 01.01, the error covariance matrix for model–
observation misfit of concentrations, 𝐑𝐑, was determined based on the difference between the retrieved 
and simulated XCO2 values at each measurement. It was assumed that the values simulated using 
surface fluxes estimated from measurements by global networks of near-surface atmospheric 
observations provide relevant variability in XCO2 over regional and global scales. Under these 
conditions, as the misfit becomes larger the inversion does not focus on fitting the retrieved values at 
the expense of a smaller misfit, so the a posteriori fluxes can result in behavior similar to those being 
constrained by the near-surface atmospheric observations. However, this implies that the near-surface 
atmospheric observations are used primarily as a constraint on the a priori CO2 source and sink data, 
and there is little use for GOSAT-2 XCO2 data. Hence, in version 01.02, to evaluate the ability of the 
GOSAT-2 XCO2 data to deduce the global surface CO2 fluxes, 𝐑𝐑 is represented using a uniform 
value (𝐑𝐑 = 4 ppm) for all retrieved concentrations. For the error covariance matrix 𝐁𝐁, we apply 
arbitrary scaling factors to a priori strengths. In the GOSAT L4 Product, the global surface CO2 fluxes 
are deduced by optimizing only the a priori information in terms of net ecosystem exchange and OCN 
fluxes, with FFCO2 and BB emissions being prescribed with an assigned uncertainty of zero 
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(Maksyutov et al., 2013). It remains unclear to what extent the spatiotemporal variations of natural 
fluxes appear over the globe relative to anthropogenic emissions. Therefore, the GOSAT-2 L4 Product 
optimizes all a priori fluxes except for FFCO2 emissions in the estimate of global fluxes; i.e., 
uncertainty is distributed to five a priori fluxes: 30%, 30%, 100%, 100%, and 20% for the GPP, RE, 
LUC, BB, and OCN fluxes. For the GPP, RE, and OCN fluxes, off-diagonal elements of the error 
covariance matrix 𝐁𝐁 are prescribed using a Gaussian function with spatial error correlation lengths 
of 500, 500, and 1000 km, respectively (Niwa et al., 2017b). 

The outputs of the GOSAT-2 L4 CO2 computational system are an estimate of the monthly 
averaged global surface CO2 flux at a spatial resolution of 2.5° and 6-hourly atmospheric CO2 
concentrations on a three-dimensional grid with the same horizontal resolution (2.5°) and 17 pressure 
levels in the vertical along with a near-surface level. These outputs are provided as the GOSAT-2 L4A 
Global CO2 Flux Product and the GOSAT-2 L4B Global CO2 Distribution Product, respectively. 
 
 
4.2 Processing outline 
 
The GOSAT-2 L4 computational system was constructed on the NEC SX-Aurora TSUBASA A511-
64 supercomputer at NIES, which features a maximum of 256 nodes, each with eight cores; the vector 
processor has a peak performance of up to 622.8 teraflops. The HPE Apollo2000 scalar computer with 
a peak performance of 86.0 teraflops at NIES is also used for preprocessing to convert the input 
information to the model grid data. 

The process of deducing the global surface CO2 flux from GOSAT-2 XCO2 data begins with the 
assembly of various input data that are required for operation of the system. The input data are 
reanalyzed meteorological fields, a priori CO2 sources and sinks, and observations of atmospheric 
CO2. In the simulation of atmospheric transport, horizontal winds of the model are nudged toward 
those of the reanalysis to reproduce past and current atmospheric transport fields. In the operation of 
the GOSAT-2 L4 computational system, an atmospheric tracer transport simulation is first performed 
with nudging to generate and archive three-dimensional transport fields (air mass density, air mass 
flux, vertical diffusion coefficient, water substances, temperature, and cumulus base mass flux). The 
instantaneous values of these fields are archived every hour for the cumulus base mass flux and every 
3 h for other variables, excluding the air mass flux. For the air mass flux, the variables are averaged 
every 3 h to maintain better consistency with continuity (CWC). The archive data are then used as 
input for an iterative operation of the atmospheric tracer transport model to deduce the surface fluxes 
using a four-dimensional variational (4D-Var) method (Niwa et al., 2017a, b; see Section 4.4). 

The a priori CO2 source and sink data are prepared for a given analysis period and interpolated 
onto the model grid of the atmospheric tracer transport model. GOSAT-2 XCO2 data are used as the 
atmospheric observational data to drive the GOSAT-2 L4 CO2 computational system, and a ground-
based atmospheric observational dataset is used as ancillary data to prepare an initial field of 
atmospheric CO2. In system operation, using the ground-based atmospheric observation data alone, an 
inversion is first performed to infer monthly a posteriori fluxes just before the analysis period and 
simulate corresponding three-dimensional atmospheric CO2 variability with a forward simulation 
using the a posteriori fluxes for the initial field data. Then, we calculate the monthly global surface 
CO2 fluxes and their three-dimensional variability in the atmosphere over the analysis period. The 
forward and backward simulations of atmospheric CO2 are performed for a duration of 2 months 
before the analysis period and 2 months after. 
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4.3 Input data 
 
4.3.1 Meteorological reanalysis data 
 
Horizontal winds in the atmospheric tracer transport model are nudged using the Japanese 55-year 
Reanalysis data (JRA-55; Kobayashi et al., 2015). Reanalysis data are used in our model system for 
the u- and v-components of wind (“anl mdl ugrd” and “anl mdl vgrd”; m s−1) in the TL319 model grid 
field with 60 hybrid vertical levels. The JRA-55 horizontal winds are provided on a 6 h time step at 
0000, 0600, 1200, and 1800 UTC. As 40 vertical layers are implemented in the atmospheric tracer 
transport model used in our system, the vertical coordinate system in the JRA-55 horizontal wind data 
is interpolated to that of the atmospheric tracer transport model; subsequently, the horizontal winds of 
the model simulation are nudged every 6 h to the wind fields in JRA-55. 
 
4.3.2 A priori fluxes 
 
To prescribe FFCO2 emissions in our system, we use the Open-source Data Inventory for 
Anthropogenic CO2 (ODIAC version “ODIAC2020 FFCO2 emission dataset”; Oda et al., 2018). 
ODIAC provides data products for FFCO2 emissions at 1-km and 1° grid resolutions at monthly time 
step. The 1° data are used in our system. ODIAC data comprise FF emissions from FF combustion, 
cement production, and gas flaring over land, and international bunker emissions from international 
aviation and marine bunkers and Antarctic fisheries over the ocean. An aggregation of both sets of 
emissions is used as FFCO2 emissions in our system. The ODIAC ver. ODIAC2020 covers the period 
between 1979 and 2019. To extend the period of ODIAC data up to 2020, FFCO2 emissions in 2020 
are approximated by scaling the ODIAC emissions in 2019 by a factor of 0.94, which is obtained using 
the ratio of CO2 emissions from energy sources to total global CO2 emissions in 2020 and 2019 
(32,078.5 and 34,095.8 million ton CO2, respectively) reported in the BP Statistical Review of World 
Energy (BP, 2022). 

CO2 flux components associated with the terrestrial biosphere (i.e., GPP, RE, and LUC) are 
derived from a prognostic biosphere model, the Vegetation Integrative SImulator for Trace gases 
(VISIT; Ito, 2019). The VISIT model comprises three independent modules that simulate carbon 
exchanges between the atmosphere and biosphere at hourly, daily, and monthly time steps. At present, 
only the VISIT module with a monthly time step includes the processes for evaluation of the impact 
of minor carbon flows, such as methane and biogenic volatile organic compound emissions and 
subsurface carbon exports and disturbances, all of which influence the carbon budget estimates of 
terrestrial ecosystems such as GPP and RE. We selected the carbon emissions associated with land-
use conversion from the components of minor carbon flows to represent LUC emissions with a 
monthly time step. GPP and RE fluxes were derived from the VISIT module with an hourly time step 
to represent the immediate response of the terrestrial biosphere to changes in environmental conditions 
and their impact on atmospheric CO2 variability. However, the GPP and RE estimates using the module 
with an hourly time step are impacted fewer times by disturbance processes such as LUC, which is 
likely to result in biases in estimates of regional carbon budgets. To reduce these biases, the values of 
GPP and RE with an hourly time step are scaled each month and at each grid cell with those estimated 
from the module with a monthly time step. Accordingly, the hourly GPP and RE used in our system 
indirectly consider the effects of minor carbon flows. 

The BB CO2 emissions are provided using a bottom-up approach with a burned area method; i.e., 
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the Global Biomass Burning Emissions Inventory (GBEI version “2022a”; Shiraishi et al., 2021; Saito 
et al., 2022). The BB emissions in GBEI are estimated by combining the remote sensing products 
related to fire distribution with aboveground biomass and landcover classification distributions, all of 
which are derived from satellite observations. GBEI provides data products for CO2, CH4, and CO 
emissions from BB at 1-km and 1° grid resolutions with a monthly time step. The 1° resolution data 
are used as monthly BB CO2 emissions in our system. 

We use the Japan Meteorological Agency (JMA) carbon dioxide mapping data (JMA Ocean CO2 
Map; Iida et al., 2021) as the a priori OCN flux. The data provide information on monthly oceanic 
pCO2 and CO2 uptake at 1° grid resolution. The pCO2 field is calculated using analytical sea surface 
temperatures, salinity, and chlorophyll-a concentration data from satellite observations, and the field 
of CO2 uptake is calculated from the difference between oceanic and atmospheric pCO2 and 10-m 
wind speeds. 

Table 2 lists the a priori fluxes and their data sources with respective references. 
 

Table 2. List of a priori fluxes used in the GOSAT-2 L4 CO2 computational system. 

Prior Model/Product Reference Temporal/Spatial resolution 
FF ODIAC Oda et al. (2018) monthly/1° × 1° 
GPP VISIT Ito (2019) hourly/0.5° × 0.5°* 
RE VISIT Ito (2019) hourly/0.5° × 0.5°* 
LUC VISIT Ito (2019) monthly/0.5° × 0.5° 

BB GBEI 
Shiraishi et al. (2021); 
Saito et al. (2022) 

monthly/1° × 1° 

OCN JMA Ocean CO2 Map Iida et al. (2021) monthly/1° × 1° 
* Hourly GPP and RE were originally simulated with a spatial resolution of 0.3125° × 0.3125° then interpolated 

onto a 0.5° × 0.5° grid. Scaling of hourly values of GPP and RE to monthly values was performed on a 0.5° × 0.5° 
grid. 

 
4.3.3 Atmospheric observational data 
 
The estimation of global surface CO2 flux using the inverse scheme requires atmospheric 
concentration data to infer the spatial distribution of surface fluxes. The primary information on 
atmospheric observations used in our system is GOSAT-2 XCO2 data retrieved from the SWIR spectra 
acquired by TANSO-FTS-2 (Yoshida and Oshio, 2022). The initial products of GOSAT-2 XCO2 data 
ver. 01.04/07 were released in November 2020/December 2021, and the revised new data ver. 02.00 
were released in August 2022. The revision details of GOSAT-2 XCO2 data from ver. 01.04/07 to ver. 
02.00 are given by Yoshida and Oshio (2022). A summary of the main revisions is as follows: 

• A zero-level offset and an instrument line shape stretch factor for each sub-band are newly 
incorporated in the state vector. 

• Some parameters in the retrieval algorithm, such as the coefficient of empirical noise and post-
screening criteria, are revised. 

• The Solar Pseudo-Transmittance Spectrum that is used as the solar Fraunhofer line model is 
updated from version 2015 of the Disk-Integrated Spectrum to version 2016 (Toon, 2015). In 
addition, the TSIS-1 Hybrid Solar Reference Spectrum (Coddington et al., 2021) is used as the 
solar baseline. 
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NIES GOSAT-2 Project (2020, 2022) reported comparison results of XCO2 data between GOSAT-
2 and the Total Carbon Column Observing Network (TCCON; Wunch et al., 2011). In this comparison, 
the GOSAT-2 XCO2 data ver. 01.04 for the period from 1 March 2019 to 18 May 2020 and those of 
ver. 02.00 for the period from 1 August 2019 to 31 July 2020 were analyzed over four target areas 
within radii of ±0.1°, ±1°, ±2°, and ±5° from the TCCON site. As summarized in Table 3, the standard 
deviations of mean biases (ppm) are explicitly improved in the GOSAT-2 XCO2 data ver. 02.00 relative 
to those of ver. 01.04; the standard deviations of the GOSAT-2 XCO2 data ver. 02.00 over land and 
ocean are 41%–46% and 47%–75%, respectively, which represent an improvement over ver. 01.04. 
The mean biases over land are improved in ver. 02.00 by 0.21–0.44 ppm (9%–19%), whereas the mean 
biases over ocean increased. 
 

Table 3. Comparison of XCO2 (over land and ocean) between GOSAT-2 and TCCON using NIES 
GOSAT-2 Project (2020, 2022). Distance indicates the target area for comparison, N is the number of 

comparison data, Bias is the mean bias (ppm), and STDEV is the standard deviation (ppm). 

Data Distance 
 Land  Ocean 

 N 
Bias 

(ppm) 
STDEV 
(ppm) 

 N 
Bias 

(ppm) 
STDEV 
(ppm) 

Ver. 01.04 

±0.1°  532 2.63 3.29  1 2.92 - 
±1°  1981 2.29 3.86  31 0.27 6.85 
±2°  2640 2.34 4.04  92 −0.14 5.79 
±5°  5510 2.14 4.31  733 0.26 4.65 

          

Ver. 02.00 

±0.1°  408 2.27 1.94  0 - - 
±1°  1715 2.08 2.08  52 2.43 1.74 
±2°  2505 1.90 2.21  117 2.35 1.59 
±5°  5397 1.84 2.38  645 2.29 2.46 

 
Initial atmospheric CO2 concentration field data are required for effective reconstruction of the 

source and sink distribution from the GOSAT-2 column concentrations in the atmospheric tracer 
transport model simulation. We prepared the initial field data by preprocessing the GOSAT-2 L4 
computational system with in situ measurements from the Observation Package (ObsPack) Data 
Products (Ver. obspack_co2_1_GLOBALVIEWplus_v7.0; https://doi.org/10.25925/20210801; 
Schuldt et al., 2021). The latest ObsPack product includes 587 atmospheric CO2 datasets derived from 
observations made by 66 laboratories in 23 countries. The atmospheric CO2 observations at 70 sites 
in the ObsPack product, which are the same as the observation sites used in the GOSAT Level 4 CO2 
Product (Maksyutov et al., 2013), were used for preparation of the initial field data (Table 4). 
  

https://doi.org/10.25925/20210801
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Table 4. List of the ObsPack observation sites used for construction of the initial field data. 
Abbreviations: CSIRO, Commonwealth Scientific and Industrial Research Organization; ECCC, 
Environment and Climate Change Canada; ICOS-ATC, Integrated Carbon Observation System 
(ICOS) Atmosphere Thematic Centre; JMA, Japan Meteorological Agency; KUP, University of 

Bern, Physics Institute, Climate and Environmental Physics; NOAA, National Oceanic and 
Atmospheric Administration (NOAA) Global Monitoring Laboratory and Center for Atmospheric 

and Oceanic Studies; SAWS, South African Weather Service; TU, Tohoku University. 

Site Name Country Lab 
Measurement 
Type 

ABT Abbotsford British Columbia Canada ECCC surface in situ 
ALT Alert Nunavut Canada NOAA surface flask 
ALT Alert Nunavut Canada ECCC surface in situ 
AMT Argyle Maine United States NOAA tower in situ 
ASC Ascension Island United Kingdom NOAA surface flask 
BHD Baring Head Station New Zealand NOAA surface flask 
BRA Bratt’s Lake Saskatchewan Canada ECCC surface in situ 

BRW 
Barrow Atmospheric Baseline 
Observatory 

United States NOAA surface flask 

CAR Briggsdale Colorado United States NOAA aircraft pfp 
CBA Cold Bay Alaska United States NOAA surface flask 
CDL Candle Lake Saskatchewan Canada ECCC surface in situ 
CGO Cape Grim Tasmania Australia NOAA surface flask 
CHM Chibougamau Quebec Canada ECCC surface in situ 

CIB 
Centro de Investigacion de la 
Baja Atmosfera (CIBA) 

Spain NOAA surface flask 

CMA Cape May New Jersey United States NOAA aircraft pfp 
CPS Chapais Quebec Canada ECCC surface in situ 
CPT Cape Point South Africa SAWS surface in situ 
CYA Casey Antarctica Australia CSIRO surface flask 
EGB Egbert Ontario Canada ECCC surface in situ 
ESP Estevan Point British Columbia Canada NOAA aircraft pfp 
ETL East Trout Lake Saskatchewan Canada NOAA aircraft pfp 
FSD Fraserdale Canada ECCC surface in situ 
HBA Halley Station Antarctica United Kingdom NOAA surface flask 
HDP Hidden Peak (Snowbird), Utah United States NOAA surface in situ 
HIL Homer Illinois United States NOAA aircraft pfp 
HUN Hegyhatsal Hungary NOAA surface flask 
ICE Storhofdi Vestmannaeyjar Iceland NOAA surface flask 
IZO Izana Tenerife Canary Islands Spain NOAA surface flask 
JFJ Jungfraujoch Switzerland KUP surface in situ 
KAS Kasprowy Wierch, High Tatra Poland NOAA surface in situ 
KEY Key Biscayne Florida United States NOAA surface flask 
KUM Cape Kumukahi Hawaii United States NOAA surface flask 
LEF Park Falls Wisconsin United States NOAA aircraft pfp 
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Site Name Country Lab 
Measurement 
Type 

LLB Lac La Biche Alberta Canada ECCC surface in situ 
LMP Lampedusa Italy NOAA surface flask 

MEX 
High Altitude Global Climate 
Observation Center 

Mexico NOAA surface flask 

MHD Mace Head County Galway Ireland NOAA surface flask 
MID Sand Island Midway United States NOAA surface flask 
MLO Mauna Loa Hawaii United States NOAA surface in situ 
MNM Minamitorishima Japan JMA surface in situ 
MQA Macquarie Island Australia CSIRO surface flask 
NHA Worcester Massachusetts United States NOAA aircraft pfp 
NWR Niwot Ridge Colorado United States NOAA surface flask 
OXK Ochsenkopf Germany NOAA surface flask 
PFA Poker Flat Alaska United States NOAA aircraft pfp 
POC Pacific Ocean  NOAA shipboard flask 
PSA Palmer Station Antarctica United States NOAA surface flask 
RPB Ragged Point Barbados NOAA surface flask 
RYO Ryori Japan JMA surface in situ 
SEY Mahe Island Seychelles NOAA surface flask 

SGP 
Southern Great Plains 
Oklahoma 

United States NOAA surface flask 

SMO Tutuila American Samoa NOAA surface flask 
SNP Shenandoah National Park United States NOAA surface in situ 
SPO South Pole Antarctica United States NOAA surface flask 

SSL 
Schauinsland Baden-
Wuerttemberg 

Germany ICOS-ATC surface in situ 

SUM Summit Greenland NOAA surface flask 
SYO Syowa Station Antarctica Japan TU surface in situ 
TAP Tae-ahn Peninsula Republic of Korea NOAA surface flask 
THD Trinidad Head California United States NOAA surface flask 
USH Ushuaia Argentina NOAA surface flask 
UTA Wendover Utah United States NOAA surface flask 
UUM Ulaan Uul Mongolia NOAA surface flask 
WBI West Branch Iowa United States NOAA tower in situ 
WGC Walnut Grove California United States NOAA tower in situ 

WIS 
Weizmann Institute of Science 
at the Arava Institute Ketura 

Israel NOAA surface flask 

WKT Moody Texas United States NOAA tower in situ 

WLG Mt. Waliguan 
People’s Republic of 
China 

NOAA surface flask 

WSA Sable Island Nova Scotia Canada ECCC surface in situ 
YON Yonagunijima Japan JMA surface in situ 
ZEP Ny-Alesund Svalbard Norway and Sweden NOAA surface flask 
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4.4 Atmospheric simulation and flux estimate 
 
We use the NICAM-TM to simulate the transport of atmospheric CO2. NICAM uses a quasi-
homogeneous distribution of hexagonal or pentagonal grid cells derived from recursive division of an 
icosahedron to perform global simulations with high spatiotemporal resolution (Tomita and Satoh, 
2004). The dynamic core of the model involves the use of nonhydrostatic equations expressed with 
finite volume methods, which can implement the CWC for tracer transport in the model. The NICAM-
TM ensures strict mass conservation to produce realistic simulations of atmospheric tracer transport 
(Niwa et al., 2011). 

The solution of 𝛿𝛿𝐱𝐱 that minimizes Eq. (2) is given by the gradient of the objective function, 
𝐠𝐠 = 𝜕𝜕𝐉𝐉 𝜕𝜕𝛿𝛿𝐱𝐱⁄ , so that 
 

𝐠𝐠 = 𝐁𝐁−1𝛿𝛿𝐱𝐱 + 𝐌𝐌T𝐑𝐑−1(𝐌𝐌𝛿𝛿𝐱𝐱 − 𝐝𝐝). (3) 
 
The second term on the right-hand side in Eq. (3) denotes that a vector of model–observation misfit, 
𝐌𝐌𝛿𝛿𝐱𝐱 − 𝐝𝐝, is integrated backward in time by an adjoint operator, 𝐌𝐌T. The optimized vector of 𝛿𝛿𝐱𝐱 
is deduced by minimizing the gradient 𝐠𝐠 using the 4D-Var method with the iterative operation of a 
forward model and its backward integration that is represented using an adjoint model. 

The adjoint calculation requires program codes to step backward in time for integrating 
sensitivities to source components, as shown in the second term of Eq. (3). The adjoint model in 
NISMON-CO2 implements the backward integration by reading in reverse order the meteorological 
variables that are archived for forward simulations with NICAM-TM. In the model, adjoint codes for 
vertical diffusion and cumulus convection are written based on a so-called discrete approach, and the 
expression for advection is given by both the discrete and continuous approaches (Niwa et al., 2017a). 
In the GOSAT-2 L4 computational system, the continuous approach is used to calculate advection 
processes. 

In the estimates of global surface fluxes using NISMON-CO2, the POpULar scheme (Fujii, 2005), 
based on a quasi-Newton method, is applied to obtain the 𝛿𝛿𝐱𝐱 that minimizes the cost function 𝐉𝐉 
(Niwa et al., 2017b). The POpULar scheme uses the Broyden–Fletcher–Goldfarb–Shanno algorithm 
(BFGS) to estimate the inverse Hessian of 𝐉𝐉, which gives the approximate Newton’s direction 𝐝𝐝k =
−𝐇𝐇k𝐠𝐠k, where 𝐇𝐇k is the approximated inverse Hessian matrix of 𝐉𝐉, and 𝐠𝐠k is the gradient shown 
in Eq. (3) at the k-th iteration. The approximate Newton’s direction 𝐝𝐝k is then used to find the next 
point of the vector 𝐱𝐱 with step size 𝛼𝛼𝑘𝑘 in the direction 𝐱𝐱k+1 = 𝐱𝐱k + 𝛼𝛼𝑘𝑘𝐝𝐝k. Practical algorithms of 
POpULar for the iterative solution to obtain 𝛿𝛿𝐱𝐱 have been described by Fujii (2005) and Niwa et al. 
(2017b). 

The sensitivity of the remote sensing measurements to the atmosphere is generally not uniform 
with altitude. Therefore, an accurate representation of vertical atmospheric profiles retrieved from 
TANSO-FTS-2 measurements in the model simulation results is essential for comparison between 
GOSAT-2 XCO2 data and the simulations. We apply the averaging kernel matrix 𝐀𝐀 with a priori 
information used in the retrieval to the atmospheric inversion of simulated atmospheric concentrations, 
as follows: 
 

𝑥𝑥𝑠𝑠 = 𝑥𝑥𝑎𝑎 + 𝐚𝐚(𝐱𝐱s − 𝐱𝐱a), (4) 
 
where 𝑥𝑥  is the column-averaged dry-air mole fraction, and 𝐚𝐚  and 𝐱𝐱  are vectors for the column 
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averaging kernel of the dry-air mole fraction and the vertical profile of atmospheric concentrations, 
respectively. Subscripts 𝑎𝑎  and 𝑠𝑠  refer to a priori and simulated atmospheric concentrations, 
respectively. Here, the entire depth of the atmosphere is divided into 15 vertical layers in the retrieval 
of the GOSAT-2 TANSO-FTS-2 SWIR Level 2 Column-averaged Dry-air Mole Fraction. 

The a priori column-averaged dry-air mole fraction is given by 
 

𝑥𝑥𝑎𝑎 = 𝐡𝐡T𝐱𝐱a, (5) 
 
where 𝐡𝐡 is a pressure weighting function, which is expressed using a vector of the partial column 
amount of dry air 𝜔𝜔: 
 

𝐡𝐡𝑖𝑖 =
𝜔𝜔𝑖𝑖,𝑗𝑗

∑ 𝜔𝜔𝑖𝑖,𝑗𝑗𝑗𝑗

, (6) 

 
where 𝑖𝑖 refers to a discrete observation point and 𝑗𝑗 is the vertical level. The total column averaging 
kernel 𝐚𝐚 is determined as follows using 𝐡𝐡 and the averaging kernel matrix 𝐀𝐀: 
 

𝐚𝐚 = 𝐡𝐡T𝐀𝐀. (7) 
 

We applied the variables 𝐱𝐱a, 𝜔𝜔, 𝐀𝐀, pressures in the vertical layers, and surface pressure (hPa) 
derived from the GOSAT-2 SWIR L2 CO2 product to Eqs (4)–(7). The pressures and surface pressure 
were used to adjust the vertical profile of partial column amount given by 𝐱𝐱s to that of 𝐱𝐱a. 
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5 Level 4A and Level 4B Products 
 
The GOSAT-2 L4 CO2 Product consists of the L4A Global CO2 Flux Product and the L4B Global CO2 
Distribution Product. The L4A Product is created by gridding the a posteriori CO2 fluxes to a 2.5° 
latitude/longitude grid on a monthly timescale, and the L4B Product provides global distributions for 
instantaneous values of atmospheric CO2 concentrations every 6 h at 17 fixed atmospheric pressure 
levels (975, 925, 900, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, and 10 hPa) and 
near the surface on a 2.5° latitude/longitude grid. The L4B Product is produced by performing forward 
simulation using the atmospheric tracer transport model with the a posteriori CO2 fluxes. 

The GOSAT-2 L4 Product is stored in NetCDF format data files (Conventions CF-1.6). In the 
L4A Product, a priori fluxes for six types of source and sink strengths and a posteriori fluxes for four 
types of source and sink strengths are provided on a monthly timescale together with total fluxes (g C 
m−2 day−1). The a posteriori fluxes for GPP (flux_apos_gpp), RE (flux_apos_re), and LUC 
(flux_apos_luc) were merged to a terrestrial biosphere flux as flux_apos_teb = flux_apos_re + 
flux_apos_luc − flux_apos_gpp. The L4B Product provides three-dimensional atmospheric CO2 
concentration fields (mol mol−1) and surface pressures derived from the atmospheric simulations. For 
comparison of the GOSAT-2 XCO2 data, column concentrations of the L4B Product can be estimated 
using variables stored in the product, and some additional parameters may be obtained from the 
GOSAT-2 SWIR L2 CO2 product, as described in Section 4.4. 
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