GOSAT-2 TANSO-FTS-2 SWIR L2 カラム平均気体濃度プロダクト(Ver.02.10)の検証概要

2025 年 2 月 国立環境研究所 GOSAT-2 プロジェクト

GOSAT-2 TANSO-FTS-2 SWIR L2 カラム平均気体濃度プロダクト(以下、GOSAT-2 Full Physics プロダクト)の Ver.02.10 の二酸化炭素、メタン、水蒸気、一酸化炭素の乾燥空気に対する全量平均濃度データ(XCO₂、XCH₄、XH₂O、XCO)を、Total Carbon Column Observing Network (TCCON)で観測された高分解能地上 FTS の観測データ(以下、TCCON データ)と比較して検証を行った。検証結果は以下の通りである。

GOSAT-2 Full Physics プロダクト

GOSAT-2 Full Physics プロダクトは Ver.02.10 を用いた。比較期間は 2019 年 3 月 1 日~2024 年 1 月 31 日である。比較範囲における陸域の割合が 10%以上のものを陸域(Land)データ、10% 未満のものを海域(Ocean)データとした。ゲインの区別はしていない。データはそれぞれの品質フラグが「Good」のもののみを用いた。カラムアベレージングカーネルと先験値の影響は、速報的な解析のために考慮していない。

TCCON データ

TCCON データは、現在公開されているアルゴリズム GGG2020 で解析された値を用いた。それらは GOSAT-2 のオーバーパス時刻の±30 分以内で平均されている。各要素の現場観測との関係を下図に示す。Calibration scale は、これらのデータがエアマス非依存の補正係数によってどのスケールまたはデータの出処に関連づけられているかを示している。なお n/a は該当しない。ARMは、米国エネルギー省で実施されている大気放射観測プロジェクトのことである。

X _{gas} product	Correction factor	Calibration scale
X _{CO2}	1.0090	WMO X2019
X _{CH4}	1.0031	WMO X2004
X _{co}	1.0000	n/a
X _{H2O}	0.9883	ARM radiosondes

GOSAT-2 Full Physics プロダクトと TCCON データの比較条件

- GOSAT-2 Full Physics プロダクトは、比較範囲として TCCON サイトを中心に緯度・経度が ±0.1°、±1°、±2°、±5°以内で取得されたものを、陸域と海域に分けてTCCONサイトの 結果と比較した。TCCON 観測地点が内陸に多いため、海域の比較データ数は陸域に比べて 少ない。
- GOSAT-2 Full Physics プロダクトのうち、フットプリント高度と TCCON サイトの高度との差が 500 m より大きいものは比較から除外した。

検証結果

表 1 に、海陸別に各比較範囲の比較データ数、平均バイアス(GOSAT-2 Full Physics プロダクトから TCCON データを差し引いたもの)とその標準偏差、それぞれの相対値を示す。

表 1 GOSAT-2 Full Physics プロダクト(Ver.02.10)の各比較範囲での平均バイアス(Bias)とその標準偏差(Std)と相対値。Land は陸域データ、Ocean は海域データ、N は比較データ数を示す。

SWFP /V02.10 2019/3/1- 2024/1/31	Comparis on area	Land				Ocean					
		N	Bias [ppm] or [ppb]	Std [ppm] or [ppb]	Bias [%]	Std [%]	N	Bias [ppm] or [ppb]	Std [ppm] or [ppb]	Bias [%]	Std [%]
XCO ₂	±0.1°	2370	3.19	2.06	0.77	0.50	0	-	-	-	-
	±1°	12905	3.59	2.09	0.86	0.50	134	2.73	2.12	0.66	0.51
	±2°	16605	3.55	2.16	0.85	0.52	340	2.74	2.07	0.66	0.50
	±5°	32882	3.35	2.28	0.81	0.55	2317	2.84	2.41	0.69	0.58
XCH₄	±0.1°	2370	-1.57	9.45	-0.08	0.51	0	-	-	-	-
	±1°	12905	-0.28	11.83	-0.01	0.63	135	0.70	14.15	0.04	0.76
	±2°	16605	0.62	12.65	0.03	0.67	333	-2.20	16.57	-0.12	0.89
	±5°	32882	-0.68	14.44	-0.04	0.77	2220	-7.71	17.42	-0.42	0.94
XH ₂ O	±0.1°	2370	-84.0	113.9	-3.3	4.4	0	-	-	-	-
	±1°	12905	-44.9	314.2	-0.1	18.0	137	1081.2	1028.3	149.9	181.0
	±2°	16605	-37.4	402.9	1.0	21.8	346	736.9	1133.3	123.2	180.2
	±5°	32882	-196.7	770.9	-1.9	31.4	2387	320.9	1321.6	64.0	149.0
xco	±0.1°	2370	6.04	6.44	7.74	8.21	0	-	-	-	-
	±1°	12903	6.63	11.33	7.65	10.80	136	11.55	6.52	14.46	8.26
	±2°	16603	7.03	11.34	8.15	10.91	343	10.03	7.84	12.65	9.52
	±5°	32877	6.86	13.13	8.14	11.99	2357	7.22	11.12	10.14	13.11

Unit: ppm for XCO_2 and XH_2O ; ppb for XCH_4 and XCO

図 1 に、比較範囲 $\pm 2^\circ$ での GOSAT-2 Full Physics プロダクトの TCCON データに対する海陸 別の散布図を示す。図 2 に、海陸別の比較範囲 $\pm 2^\circ$ でのバイアスの時系列変化を示す。図 3 と図 4 に、本バージョン (Ver.02.10) と前バージョン (Ver.02.00) の海陸別の各比較範囲での平均バイアスを示す。

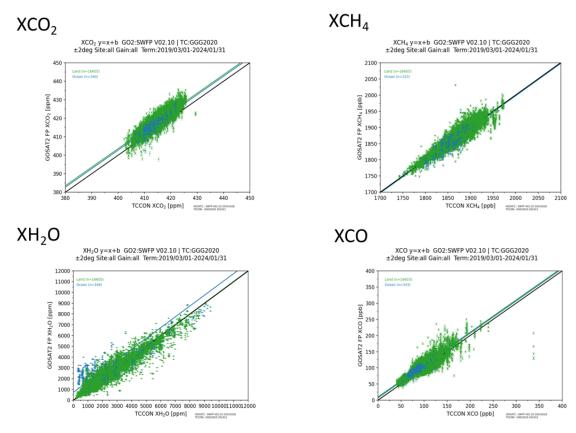


図 1 GOSAT-2 Full Physics プロダクト(XCO₂、XCH₄、XH₂O、XCO)の海陸別の比較範囲±2° での TCCON データに対する散布図(緑:陸域データ、青:海域データ)

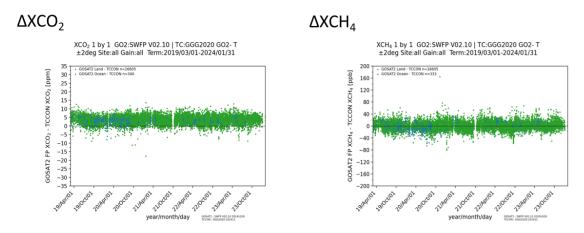


図 2 GOSAT-2 Full Physics プロダクト(XCO₂、XCH₄、XH₂O、XCO)の海陸別の比較範囲±2° でのバイアスの 2019 年 3 月から 2024 年 1 月の時系列図(緑:陸域データ、青:海域データ)

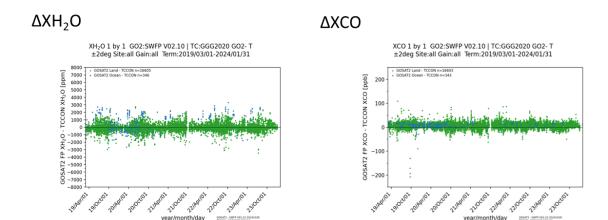


図 2 GOSAT-2 Full Physics プロダクト(XCO₂、XCH₄、XH₂O、XCO)の海陸別の比較範囲±2° でのバイアスの 2019 年 3 月から 2024 年 1 月の時系列図(緑:陸域データ、青:海域データ) (続き)

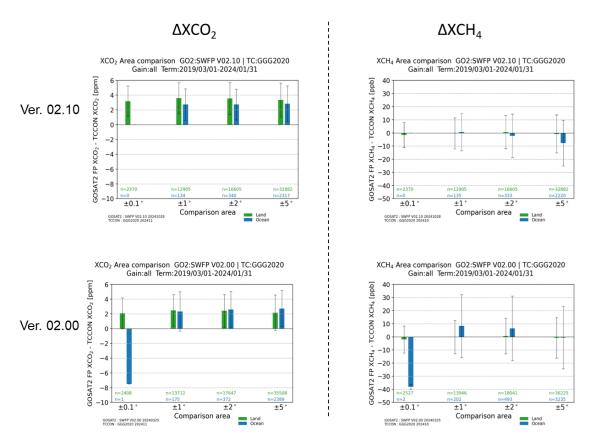


図 3 GOSAT-2 Full Physics プロダクト(XCO₂、XCH₄)の海陸別(緑:陸域データ、青:海域データ) の各比較範囲での平均バイアス(上:本バージョン Ver.02.10、下:前バージョン Ver.02.00)

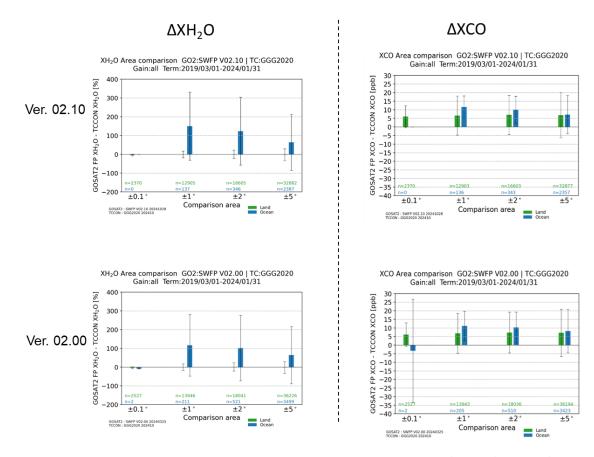


図 4 GOSAT-2 Full Physics プロダクト(XH₂O、XCO)の海陸別(緑:陸域データ、青:海域データ) の各比較範囲での平均バイアス(上:本バージョン Ver.02.10、下:前バージョン Ver.02.00)

GOSAT-2 Full Physics プロダクトの検証結果のまとめ

GOSAT-2 Full Physics プロダクト(Ver.02.10、2019 年 3 月 1 日~2024 年 1 月 31 日)の XCO₂、 XCH₄、XH₂O、XCO を TCCON データと比較した。比較範囲 $\pm 2^{\circ}$ での検証結果は以下の通りである。

- 陸域と海域の XCO_2 の平均バイアスとその標準偏差は、それぞれ 3.55 ± 2.16 ppm $(0.85\pm0.52\%)$ と 2.74 ± 2.07 ppm $(0.66\pm0.50\%)$ である。
- 陸域と海域の XCH₄ の平均バイアスとその標準偏差は、それぞれ 0.62 ± 12.65 ppb $(0.03\pm0.67\%)$ 、 -2.20 ± 16.57 ppb $(-0.12\pm0.89\%)$ である。
- 陸域と海域の XH₂O の平均相対バイアスとその標準偏差は、それぞれ 1.0±21.8%と 123.2±180.2%である。これらの標準偏差は比較的大きい。
- 陸域と海域の XCO の平均バイアスとその標準偏差は、それぞれ 7.03±11.34 ppb (8.15±10.91%)と10.03±7.84 ppb(12.65±9.52%)である。
- XH₂O は比較範囲が±1° より大きい場合、Izana では大きな正のバイアスがある。フットプリント 高度とTCCONサイトの高度との差が500mより大きいデータは比較から除外しているが、Izana は高度による水蒸気変化が大きいかもしれない。
- XCO については、いくつかの観測地点のバイアスが小さいが、標準偏差が大きいものがある。 大気汚染や野外火災の発生源の影響が見えている可能性がある。
- 観測された全ての要素について、観測期間中のバイアスの傾向は特に見られない。

それ以外の条件で取得された GOSAT-2 Full Physics プロダクトの検証結果は以下の通りである。

- XCO₂ については、平均バイアスは全て正で、陸域の平均バイアスは全て海域の平均バイアスより大きい。標準偏差は全て平均バイアスより小さい。なお、海域の±0.1° のデータはない。
- XCH₄ については、平均バイアスの符号は比較範囲によって異なるが、標準偏差は全て平均バイアスより大きい。海域の平均バイアスの絶対値は、データ数が 0 である海域の±0.1° を除いて、比較範囲が広がるにつれて増加している。
- XH₂O については、陸域の平均バイアスは全て負で、その絶対値は海域よりはるかに小さい。 海域の平均バイアスは、データ数が 0 である±0.1°を除いて、全て正である。海域の平均バイ アスは、±0.1°を除いて、比較範囲が広がるにつれて減少している。
- XCO については、全ての平均バイアスが正である。海域の平均バイアスは、データ数が 0 である±0.1°を除いて、陸域の平均バイアスより大きい。陸域の平均バイアスは全て比較的安定しており、6~8 ppb の範囲にある。海域の平均バイアスは、±0.1°を除いて、比較範囲が広がるにつれて減少している。

本バージョン(Ver.02.10)と前バージョン(Ver.02.00)の平均バイアスの比較は以下の通りである。

- XCO₂ については、本バージョンの標準偏差は全て平均バイアスより小さいが、前バージョンでは 2 つの比較範囲の標準偏差(陸域の±5°と海域の±1°)で平均バイアスより大きい。本バージョンでは、全ての平均バイアスが前バージョンより大きい。なお、本バージョンでは、海域の±0.1°のデータはない。
- 海域の XCH4については、本バージョンでは、比較範囲を広げると平均バイアスが 0.7 ppb から -7.71 ppb に減少し、前バージョンでは、データ数が 2 である±0.1° を除いて、比較範囲を広げると平均バイアスが 8.28 ppb から-0.56 ppb に減少した。
- 陸域の XH₂O については、本バージョンは前バージョンと比べて平均バイアスに大きな変化はない。海域では、本バージョンの平均バイアスは全て前バージョンより大きい。
- XCO については、本バージョンの平均バイアスは、海域の±1°を除いて、全て前バージョンより若干小さい。なお、両バージョンの平均バイアスの全体的な特徴はほぼ同じである。なお、本バージョンでは、海域の±0.1°のデータはない。

今後も、GOSAT-2 Full Physics プロダクトの質を向上させるために、校正・アルゴリズム改善・検証を継続する必要がある。